Наверняка все слышали про изменяемую геометрию впускного коллектора и даже встречали аббревиатуры вроде IMRC, DIVA, DSI, VIS или чего-то похожего.
Хорошо, но не очень
Любой уважающий себя автомобилист знает, что на такте впуска в цилиндр попадает воздух. Пока поршень движется вниз, к нижней мёртвой точке, впускные клапаны (или клапан) открыты, и воздух всасывается внутрь. И этот процесс идёт просто прекрасно, пока клапан открыт. А что происходит, когда он закрывается? В этот момент воздух внезапно останавливается перед «закрытой дверью», ударяется об неё и идёт обратно во впуск. Звучит, может быть, на первый взгляд странно, но это так: воздух тоже имеет массу (кубометр воздуха весит больше килограмма, между прочим), а значит, он знаком с понятием инерции. Итак, он возвращается во впускной коллектор, а там он натыкается на дроссельную заслонку. И от нечего делать идёт опять к клапану. И оно бы ничего, если бы клапан в этот момент оказался открытым: в этом случае в цилиндр попало бы больше воздуха, а значит, при желании можно было бы впрыснуть и больше топлива. И, само собой, получить больше мощности. Именно к такому событию и стремятся конструкторы, рассчитывая сечение и длину впускного коллектора. А явление, при котором газы по инерции попадают в цилиндр в увеличивающемся количестве, называется резонансным или газодинамическим наддувом. Разумеется, оно свойственно только атмосферным моторам — в турбированных моторах необходимое количество воздуха можно нагнать этой самой турбиной. А единственный возможный наддув в атмосферном моторе — вот этот вот резонансный.
Понятно, что больше всего хочется избежать наименее благоприятного варианта развития событий: открыть впускной клапан в тот момент, когда воздух, только что ударившись о закрытый клапан, бежит от него обратно к дроссельной заслонке. В этом случае воздуха получится совсем мало, а это приведёт к очень плохому сгоранию топлива: без окислителя (кислорода в воздухе) никакого толкового сгорания не получится. Именно поэтому расчёт коллектора — работа сложная. И, к сожалению, связанная с поиском компромисса.


В атмосферном моторе воздух поступает в цилиндр приблизительно на 75−80% от объёма цилиндра. Конечно же, это не совсем плохо, но и не максимально эффективно. И чтобы сделать это наполнение более качественным, пришла мысль использовать резонансный наддув. Но сделать это не так просто: частота этого резонанса напрямую зависит от оборотов коленвала. А кроме этого, есть ещё два важных параметра: масса резонирующего воздуха и скорость его потока. И их желательно менять, потому что наполнение цилиндров при разных оборотах должно иметь немного разную физику.
Если не углубляться в дебри газовой динамики, то суть можно объяснить довольно просто: при низких оборотах скорость движения воздушного потока будет не слишком высокой, что в сочетании с реже открывающимся клапаном приведёт к нежелательным последствиям. А если при этом канал будет ещё и широким, то турбулентность воздушного потока будет слабой, что приведёт к не очень качественному перемешиванию воздуха и топлива. Сгорание такой топливовоздушной смеси будет недостаточно равномерным, а значит, неэффективным. Поэтому лучше, если на низких оборотах длина коллектора будет больше, а сечение его канала — меньше.
На высоких оборотах длинный и узкий канал наоборот нежелателен: слишком сильно вырастают насосные потери, а потенциальное количество воздуха, которое могло бы попасть в цилиндр, снижается. Поэтому в этой ситуации лучше иметь более короткий коллектор, но с большим сечением.
Раньше пытались прийти к компромиссу, сделав такой коллектор, который бы более-менее справлялся с воздушным потоком и на низких, и на высоких оборотах. В итоге воздух на каких-то оборотах поступал лучше, на каких-то похуже, и постоянное желание делать моторы мощнее и экологичнее заставили искать способы оптимизации и впускного коллектора. А способ тут один: менять его геометрию, делая его то длиннее, то короче, то уже, то шире. Так появились разные системы изменяемой геометрии впуска.
И так, и эдак
Первая система позволяет изменить длину впускного коллектора в зависимости от оборотов. Часто её так и на называют — переменная длина впуска. Принцип работы у неё довольно простой: в коллекторе предусмотрены два канала разной длины. В нём же стоит заслонка, которая может переключать поток воздуха либо на длинный канал, либо на короткий. Понятно, что тут тоже есть некоторое допущение: вместо плавного изменения длины впуска предусмотрены лишь два положения его длины. Да, решение опять попахивает компромиссом, но это всё же лучше, чем ничего, а делать систему, которая меняла бы длину коллектора непрерывно в зависимости от оборотов, было бы очень дорого. Теоретически такие системы существуют, но в жизни встречаются очень редко.
Остаётся вопрос: кто и как всем этим управляет? В наиболее примитивных системах — конечно же, разрежение в коллекторе, которое падает с ростом оборотов. В этом случае обходятся простым приводом, меняющим положение под действием мембраны. Этот механизм не слишком точный и почти не поддающийся диагностике, поэтому более популярен другой принцип — электропривод, управляемый ЭБУ. Он и работает точнее, и в случае чего способен зажечь Check Engine и напроситься на компьютерную диагностику.
Изменение сечения впускного канала работает практически по тому же принципу: либо есть заслонка, которая стоит в канале и меняет его сечение, либо, если каналов два, то она может перекрывать один из них. Управление этими заслонками такое же, как и управление заслонками переменной длины — вакуумом или электроприводом.